# **Rising Income Inequality and Economic Growth... Are Americans Better Off?**

# **Evidence from Subjective Well-Being Data**

| Boris Nikolaev                        | Daniel L. Bennett                                   |
|---------------------------------------|-----------------------------------------------------|
| Department of Entrepreneurship        | Baugh Center for Entrepreneurship & Free Enterprise |
| Baylor University                     | Baylor University                                   |
| Email: <u>borisnikolaev@gmail.com</u> | Email: <u>bennettecon@gmail.com</u>                 |

# Abstract

A large portion of the real income gains from economic growth in the US since the 1970's have accrued to the top income quartile. We evaluate the equality-efficiency trade-off using subjective wellbeing data from the General Social Survey. Specifically, we estimate the parameter of inequality aversion within a neo-utilitarian framework of welfare analysis and calculate the Atkinson Inequality Index. We then use this to evaluate social welfare over the period 1974-2012. The analysis suggests that economic growth has been sufficient to raise social welfare despite the rising level of income inequality, but Americans have become more inequality averse over time.

**JEL Codes:** D63; I31; O15; O51

Keywords: Happiness; Income Inequality; Inequality Aversion; Economic Growth; Social

Welfare; Subjective Well-Being

#### I. Introduction

Some recent studies in the field of happiness economics suggest that creating a more egalitarian society (Alesina, Di Tella, & MacCulloch, 2004; Graham & Felton, 2006)<sup>1</sup> and increasing the absolute level of personal income (Frey & Stutzer, 2002; Kahneman & Deaton, 2010) may promote a happier society. Yet, as Okun (1975) pointed out, economic growth and income equality may be mutually exclusive public policy objectives (see also Vedder & Gallaway, 1999). While per capita GDP has grown by nearly 2 percent per year since 1970, income inequality has also generally increased over this period. Figure 1 shows the evolution of top income shares in the US from 1920 to 2010 (Piketty & Saez, 2003). The share of national income concentrated in the top 1 percent of the US population, has increased from less than 8 percent in the late 1970s to almost 19 percent in 2008.<sup>2</sup> This level of income inequality is the highest level since the creation of the federal income tax in 1913.<sup>3</sup> Parallel with this trend, resentment over economic inequality has also grown more vocal in the United States, culminating in the Occupy Wall Street movement in 2011. With both economic growth and income inequality increasing over the past few decades, the question remains: are Americans better or worse off? Or is the growing gap between the rich and the poor one of the reasons that can explain the stagnating happiness levels of Americans (Stevenson & Wolfers, 2008)?

[INSERT FIGURE 1 HERE]

<sup>&</sup>lt;sup>1</sup> The literature on the relationship between inequality and happiness has produced mixed findings (e.g., Snowdon, 2012).

<sup>&</sup>lt;sup>2</sup> Several recent studies suggest that methodological issues led to Piketty and Saez overestimating the degree of inequality in the U.S. as well as how much it has increased in recent decades (e.g., Magness & Murphy, 2015; Auten and Splinter, 2018; Rose 2018).

<sup>&</sup>lt;sup>3</sup> With the exception of 1928 when the share of income concentrated in the top 1 percent of the population reached 28 percent.

Figure 2 shows that the mean level of happiness has been relatively stagnant while income equality has declined in the US over the four decades since 1970, but to better shed light on these questions, we use subjective well-being (SWB) data from the General Social Survey (GSS) to estimate the parameter of inequality aversion,  $\epsilon$ , for the United States within a neo-utilitarian framework of social welfare analysis (Atkinson, 1970) over the period 1974-2012. This allows us to calculate the Atkinson Inequality Index and compare how social welfare has evolved over time while accounting for inequality aversion that is inherent in the concavity of the utility function. While this approach has its limitations, it is one possible way to evaluate the evolution of the trade-off between economic growth and inequality aversion, that rising incomes attributable to economic growth have more than offset the disutility created by rising income inequality, as social welfare has increased since the 1970s. Our results also indicate that inequality aversion in the United States may have increased over time, which suggests that future social welfare gains may be mitigated if income inequality continues to rise.

# [INSERT FIGURE 2 HERE]

Given the growing concern over inequality as a social issue and the desire to achieve equitable growth and individual well-being, businesses and policy-makers may have to more carefully consider the welfare implications embedded in the growth-inequality trade-off when setting policy in the future. The analytical framework advanced here provides a means to evaluate these objectives empirically.

The remainder of the paper is organized as follows. The next section reviews relevant literature to motivate the theoretical model, which is presented in the Appendix. In section 3, we describe the data used to estimate  $\epsilon$ , which allows us to estimate the Atkinson Inequality Index

over the period 1974-2012 and evaluate changes in social welfare over this period. We describe our empirical model and present our results in section 4.We provide concluding remarks in section 5.

#### **II. Literature Review**

This paper examines the trade-off between economic growth and rising income inequality in the United States over the period 1974-2012. This section reviews relevant literature to motivate the theoretical model and empirical analysis.

#### *A. The Income-Happiness Paradox*

The question of whether economic growth leads to greater happiness has been widely debated in the economic literature. One popular view, which has come to be known as the Easterlin Paradox, suggests that economic growth does not improve the SWB of individuals (Easterlin, 1974). This view is based on the empirical observation that although real incomes have substantially increased over the past fifty years, there have been no corresponding gains in reported levels of happiness. In his earlier work, Easterlin showed that this relationship holds for a list of developed nations including the United States, Japan, and nine developed countries in Europe (Easterlin, 1974, 1995). More recently, Easterlin, McVey, Switek, Sawangfa, and Zweig (2010) showed that this relationship is also true for less developed countries in Asia, Latin America, and some transitional economies in Europe. Short-run gains in happiness are possible, but over the longer run (i.e., 10+ years), both rich and poor people are stuck on a "hedonic treadmill." In the United States, happiness levels have stagnated since the 1970s despite a near doubling of real income per capita, as depicted in Figure 3.

#### [INSERT FIGURE 3 HERE]

One argument explaining this observation is that beyond some "subsistence" level of income, money does not buy happiness. Frey and Stutzer (2002), for instance, suggested that per capita income of around \$10,000 may be the tipping point at which additional increases in per capita income no longer are associated with an increase in mean life satisfaction in a country. Using individual level data for the United States, Kahneman and Deaton (2010) found that emotional well-being is increasing in income up to a threshold of around \$75,000. Income above this level, they argued "is neither the road to experienced happiness nor the road to the relief of unhappiness or stress, although higher income continues to improve individuals' life evaluations. (Kahneman & Deaton, 2010, p. 1649)."<sup>4</sup>

Despite the Easterlin Paradox and some evidence suggestive that money cannot buy happiness beyond some subsistence level, a large body of economic literature shows that income is one of the strongest determinants of life satisfaction within and across countries. Powdthavee (2010), for instance, provides evidence of a large and potentially causal impact of income on life satisfaction. Di Tella, MacCulloch, and Oswald (2003) found that life satisfaction moves predictably with macroeconomic variables such as GDP per capita in the United States and Europe, controlling for individual characteristics, unobserved country and individual fixed effects, and country-specific time trends. Perovic and Golem (2010) reported similar results for a sample of 13 transition economies.

Several studies have also found that both GDP per capita and economic freedom, which has been found to be a robust positive determinant of economic growth (Bennett, Faria, Gwartney, &

<sup>&</sup>lt;sup>4</sup> Kahneman and Deaton (2010) acknowledged that happiness is multi-dimensional and differentiate between emotional well-being, or *hedonic experiences*, and life-satisfaction, or *life* evaluaton. Although money is not a good predictor of emotional happiness beyond \$75,000 of annual household income, they estimated that it is significantly and positively correlated with higher life satisfaction well beyond this threshold.

Morales, 2016, 2017; De Haan, Lundström, & Sturm, 2006; Hall & Lawson, 2014) but has an ambiguous relationship with inequality (Bennett & Nikolaev, 2016, 2017a), are positively correlated with well-being (Bennett, Nikolaev, & Aidt, 2016; Bjørnskov, Dreher, & Fischer, 2010; Gehring, 2013; Horpedahl, Jackson, & Mitchell, 2019; Nikolaev, 2014; Nikolaev & Bennett, 2017; Rode, 2013). Additionally, Bennett and Nikolaev (2017b) found that both per capita GDP and economic freedom may be associated with less happiness inequality and Bjørnskov and Ming-Chang (2015) found that legal quality improvements are associated with more happiness and less misery across a large sample of countries, but the impact of informal institutions on the well-being distribution varies depending on a nation's level of economic development.

# B. Income Comparisons & Adaptation

The above discussed findings are inconsistent with the Easterlin Paradox, suggesting that income plays an important role in determining individual happiness. Clark, Frijters, and Shields (2008) suggested that empirical evidence contrary to the Easterlin Paradox can potentially be reconciled with the notion that people are prone to perform income comparisons. Consider the utility function given by Equation 1, which is an adaptation of the model developed by Clark et al. (2008).

$$U = f[u_1(y), u_2\left(\frac{y}{y^*}\right), u_3(Z)]$$
(1)

Total utility, U, is a function of the sub-utility functions,  $u_1$ ,  $u_2$ , and  $u_3$ . Individual income is represented by y and an individual's utility is characterized by diminishing marginal utility of income such that  $u'_1 > 0$  and u'' < 0 (Easterlin, 2005). Thus, depending on the concavity of  $u_1(y)$ , marginal income is associated with gradually less marginal happiness. The second subutility function,  $u_2\left(\frac{y}{y^*}\right)$ , reflects the idea of income comparisons. In this function  $y^*$  refers to a *reference group* and the ratio  $\frac{y}{y^*}$  refers to *relative income* (Duesenberry, 1949). The reference group can be internal such as one's own past or expected income (*adaptation*), or external such as the income of some specific demographic group (*social comparison*). In the latter case,  $u_2\left(\frac{y}{y^*}\right)$ , is referred to as the *status return* from income, or alternatively, the consumption of a positional good. Early economists such as Adam Smith, John Stuart Mill, Karl Marx, and Thorstein Veblen emphasized the social nature of consumption. Their discussions lend credence to the idea that relative income and ability to consume relative to one's peers are important. Finally, the sub-utility function,  $u_3(Z)$ , picks up the utility effect of leisure and other individual level characteristics (e.g., socioeconomic and demographic variables) that have been linked to happiness (e.g., Wiklund et al., 2019).

It is often assumed in the happiness literature that the relationship between U and y is loglinear (Deaton, 2008; Stevenson & Wolfers, 2008). This implies, for example, that a person with \$10,000 of income will experience five times more utility from an additional dollar of earnings than someone with an income of \$50,000. An important characteristic of  $u_2\left(\frac{y_i}{y_i^*}\right)$  is that it is homogeneous of degree zero, which implies that status is unaffected by proportional increases in  $y_i$  and  $y^*$ .<sup>5</sup> As such, the reduced-form specification of Equation 1 that can be empirically estimated is given by Equation 2, where  $y_i$  is a measure of real income for individual *i*,  $y_i^*$  is the income of individual *i*'s reference group (e.g., median country income), and  $Z'_i$  is a vector of individual-level characteristics.

$$U_i = \beta_1 ln y_i + \beta_2 \left(\frac{y_i}{y_i^*}\right) + Z'_i \gamma + \nu_i$$
<sup>(2)</sup>

<sup>5</sup> Mathematically,  $u_2\left(\frac{ay}{ay^*}\right) = u_2\left(\frac{y}{y^*}\right)$ .

The main implication of this utility function is that the contemporary gradient between income and happiness for a given country at a point in time is greater than the dynamic gradient over time. This is because status does not affect the aggregate level of happiness in a country. In other words, it is a zero-sum game. What individuals with above average income growth gain in status happiness is lost by those with below average income growth. At a given point in time, those individuals within a country that have higher incomes enjoy higher status and are happier. Despite a fixed level of status, higher incomes attributable to growth raise individual consumption and leisure possibilities, resulting in an increase in individual happiness and overall social utility.

#### C. The Importance of Absolute Income

Diener, Lucas, and Scollon (2006) showed, however, that the happiness of some people can and does change over time. Sacks, Stevenson, and Wolfers (2013) found that: (i) within a given country, richer individuals report higher levels of life-satisfaction; (ii) across countries, richer individuals have higher levels of life satisfaction; and (iii) as countries become richer, the aggregate level of happiness tends to rise. The estimates of Sacks et al. (2013) that the gradient of the relationship between income and happiness is roughly the same across all three comparisons, which indicates that absolute income plays a large role in determining SWB and that social comparisons alone cannot explain the Easterlin paradox.

Inglehart, Foa, Peterson, and Welzel (2008) showed that economic development, democratization, and increases in social tolerance over the past thirty years have increased the SWB of millions of people around the world. It is true that as society becomes richer, economic gains have decreasing importance to human happiness. Economic growth, however, is important even beyond some basic level of development because it allows people to maximize their free

choice in other realms of life (Inglehart et al., 2008; Sen, 1999), which is linked to greater life satisfaction (Doyle & Youn, 2000; Verme, 2009).<sup>6</sup> As noted by Inglehart et al. (2008, p. 266):

"Under conditions of scarcity, people focus on survival needs, giving top priority to economic and physical security. Economic development increases people's sense of existential security, leading them to shift their emphasis from survival values toward selfexpression values and free choice which is a more direct way to maximize happiness and life satisfaction. This model proposes that human development shifts emphasis from the pursuit of happiness through economic means toward a broader pursuit of happiness by maximizing free choice in all realms of life."

If absolute income plays an important role in determining life satisfaction, yet no corresponding gains in happiness have been experienced in the United States, then the observation that average happiness in the United States have stayed flat remains a puzzle. An implicit assumption of Equation 2 is that economic growth has no effect on the distribution of income. If economic growth affects the income distribution, however, then as inequality in a country increases the aggregate mean level of happiness can decrease.<sup>7</sup> This follows directly from the concavity of the utility function. Consider Figure 4, for instance, where *W* is the social welfare function, which can be thought of as the aggregate mean level of happiness, or W =

 $\frac{1}{n}\sum u_i(y_i).$ 

# [INSERT FIGURE 4 HERE]

<sup>&</sup>lt;sup>6</sup> The Paradox of Choice hypothesis suggests that individuals faced with too much freedom of choice may suffer from decision paralysis, hindering their perception of the amount of control they have over their lives and leading to dissatisfaction (Schwartz, 2004). Nikolaev and Bennett (2016) found evidence contrary to this hypothesis, namely that both economic freedom and per capita GDP are positively associated with individual control perceptions over their sample. Although they do not explicitly test the Paradox of Choice hypothesis, Pitlik and Rode (2016) found similar results.

<sup>&</sup>lt;sup>7</sup> As described by Bennett and Nikolaev (2017), it is possible for both the mean level of happiness and the dispersion of happiness to decrease simultaneously as a result of changes in the macroeconomic environment.

If the marginal utility of income diminished with one's income (i.e., richer people gain less utility from an additional dollar of income than poorer people), then the social welfare function, *W*, will be concave. In this case, it is theoretically possible for the mean national income to increase and average happiness to decline if the people at the top of the income distribution experience greater incomes gains than those at the bottom of the distribution, although the empirical evidence is mixed (Lee, 2011). Figure 4 presents one such possible scenario in which the gains from additional income at the top of the income distribution. Thus, the aggregate mean level of happiness, or social welfare, will depend on the relationship between economic growth and income inequality. As indicated by Figure 5, incomes in the top quartile have grown considerably since 1970, while the incomes of the bottom three quartiles have been relatively stagnant over this period.

#### [INSERT FIGURE 5 HERE]

#### D. Inequality Aversion

Since Adam Smith's magnum opus, *An Inquiry into the Nature and Causes of the Wealth of Nations* (Smith, 1904 [1776]), was published, the idea that self-interest is the primary driver of human action has become the cornerstone of economic theory. But in *The Theory of Moral Sentiments*, Smith pointed out that there are a multitude of psychological motives, such as compassion for others and a sense of propriety, that are also inherent in human nature:

"How selfish soever man may be supposed, there are evidently some principles in his nature, which interest him in the fortunes of others, and render their happiness necessary to him, though he derives nothing from it, except the pleasure of seeing it. Of this kind is pity or compassion, the emotion we feel for the misery of others, when we either see it, or are made to conceive it in a very lively manner. That we often derive sorrow from the sorrows of others, is a matter of fact too obvious to require any instances to prove it; for this sentiment, like all the other original passions of human nature, is by no means confined to the virtuous or the humane, though they perhaps may feel it with the most

exquisite sensibility. The greatest ruffian, the most hardened violator of the laws of society, is not altogether without it (Smith, 1976 [1759], p. 1)."

Beginning with (Becker, 1981) seminal work on family and household economics, a number of formal theories have been developed that account for other-regarding preferences that extend the analysis to strangers. A large volume of experimental literature provides evidence that people are not only driven by self-interest, but they are also concerned for the well-being of others (Cooper & Kagel, 2015). The theory of *inequality aversion* is an extension of this line of work that suggests that individuals are often willing to sacrifice some of their income to obtain a more equitable distribution and that marginal income may generate less utility if it comes at the cost of higher inequality (Bolton & Ockenfels, 2000; Fehr & Schmidt, 2003). This suggests that the direct effect of inequality aversion is inherent in the concavity of the utility function. Aknin, Norton, and Dunn (2009) provided one possible explanation for this phenomenon, suggesting that in making judgments about the ideal income distribution, people draw not only on their moral instincts about right and wrong, but also on their intuition about the relationship between income and happiness. In other words, people believe that increases in income at the top of the income distribution do not provide as much happiness as equal increases at the bottom.

Perhaps not surprisingly, as income inequality in the US has increased over the past 40 years, resentment over economic inequality has become more vocal. The Occupy Wall Street movement encouraged millions of Americans to protest over dissatisfaction with, among other things, corporate welfare and the growing level of inequality (Stiglitz, 2012). These observations are consistent with survey data that examines attitudes toward economic inequality. Norton and Ariely (2011), for example, found that most Americans, regardless of their political affiliation and wealth status, prefer to live in a country with a more equitable distribution of wealth.

#### III. Data

Data on personal characteristics and SWB were collected from the nationally representative General Social Survey (GSS), conducted by the National Opinion Research Center at the University of Chicago. Macroeconomic variables were collected from variety of sources. Table 1 provides description and sources for all variables and Table 2 shows summary statistics. The data is cross sectional and includes a pool of American citizens over the period 1974-2012.

# [INSERT TABLE 1 HERE]

# [INSERT TABLE 2 HERE]

#### A. Subjective Well-Being

The dependent variable in the empirical analysis is the self-reported level of happiness, which was derived from the following GSS question: "*Taken all together, how would you say things are these days -- would you say that you are very happy, pretty happy, or not too happy*?" The data was numerically recoded as follows: (1) "not too happy"; (2) "pretty happy"; and (3) "very happy."<sup>8</sup>

The use of SWB data has been found to be valid, reliable, and comparable via a variety of validation tests and evidence that it moves predictably with other external variables that are theoretical correlated with happiness such as income, marriage, unemployment and economic growth (Di Tella et al., 2003; Frey & Stutzer, 2002; Kahneman & Krueger, 2006).

#### B. Personal Income

<sup>&</sup>lt;sup>8</sup> A small portion of respondents indicated "Don't know" or "No answer." These observations were ignored in the analysis.

The independent variable income is constructed from GSS categorical variable *conrinc* and represents inflation-adjusted personal income before taxes in constant 2005 dollars.<sup>9</sup> This variable has been widely used in the social sciences (Card, 1999).<sup>10</sup>

# C. Individual Characteristics

We also employ as control variables a variety of individual level characteristics from the GSS dataset. This includes variables that have been commonly found to be correlated with SWB in the empirical happiness studies such as age, gender, race, educational level, marital status, personal unemployment, trust and fairness perceptions (Graham, 2009).

#### **IV. Empirical Results**

In this section, we describe how we evaluate whether the growth-inequality trade-off in the United States over the period 1974-2012 was socially beneficial for Americans with respect to SWB. Traditional measures of economic growth are based on per capita income and do not account for distribution concerns, while the most common measure of inequality, the Gini coefficient, does not differentiate between high and low-income countries.<sup>11</sup> This makes it difficult to evaluate different states of socio-economic development that may embody a trade-off between economic growth and equality.

We therefore turn to neo-utilitarian social welfare analysis, which was developed by Atkinson (1970). Deaton (1997, p. 135) provided a useful definition of the social welfare function, suggesting that it "should be seen as a statistical `aggregator' that turns distribution into a single number that provides overall judgment on that distribution and that forces us to think

<sup>&</sup>lt;sup>9</sup> For details refer to Holt (2004).

<sup>10</sup> 

<sup>&</sup>lt;sup>11</sup> For example, two societies may have the same level of general inequality and thus the same Gini coefficient, but one of them could be far richer and its citizens enjoying greater consumption and welfare.

coherently about welfare and its distribution. Whatever our view of the policy making process, it is always useful to think about policy in terms of its effects on efficiency and equity, and the social welfare function should be thought of as a tool for organizing our thoughts in a coherent way."

In particular, we estimate the Atkinson Inequality Index, which accounts for the trade-off between income and inequality and is related to a class of additive social welfare functions (Atkinson, 1970), as described by Equation 3, where  $y_i$  and  $\bar{y}$  denote the income of individual *i* and the mean level of income, and  $\epsilon$  is the inequality aversion parameter. We must first estimate  $\epsilon$ , which we describe next. Please see the Appendix for a detailed description of how we derived the equations estimated below from our theoretical model.

$$A(\epsilon) = 1 - \left[\frac{1}{n} \sum \left(\frac{y_i}{\bar{y}}\right)^{1-\epsilon}\right]^{\frac{1}{1-\epsilon}}$$
(3)

#### A. Estimating the Inequality Aversion Parameter, $\epsilon$

There is a large literature that estimates the parameter on inequality aversion,  $\epsilon$ . Because  $\epsilon$  is conceptually the same as the risk-aversion parameter in a CRRA utility function, most previous estimates are based on the behavioral theory of choice under uncertainty. As Layard et al. (2008) pointed out, however, these estimates have been highly inconsistent, ranging from 0 to 10 (Hartley, Lanot, & Walker, 2014). One issue is that previous studies rely on indirect measures of utility and involve several extraneous assumptions. A second issue is that these estimates are based on expected utility, not experienced utility. Yet, as Kahneman, Diener, and Schwartz (1999) suggested, most of the time people make erroneous forecasts about their true utility. In this study, we estimate  $\epsilon$  based on a direct measurement of experienced utility using SWB data.

Recall from Equations 1 and 2 that utility is a function of personal income, relative income, and other individual-level characteristics. We can derive a reduced-form utility function that

accounts for the utility (or disutility) received from relative income by including  $\epsilon$ .<sup>12</sup> Because true utility is not observable, we follow Layard et al. (2008) in assuming that reported happiness is linked to utility via a fixed transformation.<sup>13</sup> Using SWB as our measure of utility, we can then estimate  $\epsilon$  using equation 4, where  $y_i$  is personal income, X is a  $n \times k$  matrix of individual characteristics and  $v_i$  is an idiosyncratic error.<sup>14</sup>

$$u_i = \alpha \left( \frac{y_i^{1-\epsilon} - 1}{1-\epsilon} \right) + \mathbf{X}' \boldsymbol{\beta} + \theta_i \tag{4}$$

Letting  $\lambda = 1 - \epsilon$ , we first estimate  $\lambda$  from Equation 4 using Box-Cox regression (Box & Cox, 1964). We then use this value to calculate  $\epsilon$ . Table 3 presents the main results from the Box-Cox regressions for the full sample and a variety of sub-samples representing a variety of time periods and different groups of individuals. The inequality aversion parameter,  $\epsilon$ , for the full sample is 0.50. The parameter shows consistency across groups with values ranging from 0.29 to 0.97. Interestingly,  $\epsilon$  increased over time from 0.19 in the 1970s to 0.65 in the 2000s. The latter result is consistent with growing public concern over rising income inequality.

<sup>&</sup>lt;sup>12</sup> The inequality aversion parameter,  $\epsilon$ , captures the concavity of the utility function with respect to income or the negative elasticity of the marginal utility of income, and the coefficient  $\alpha$  is assumed to be the same for everyone.

<sup>&</sup>lt;sup>13</sup> This requires two assumption. First, Reported happiness,  $h_i$ , is linked to true utility,  $u_i$ , via a fixed transformation such that  $h_i = f_i(u_I) = f(u_i) + \mu_i$ , where  $f_i$  is common to all people up to a random additive idiosyncratic term,  $\mu_i$  that is independent of the circumstances affecting  $u_i$ . Second, e transformation is assumed to be linear such that  $h_i = u_i + \mu_i$ .

<sup>&</sup>lt;sup>14</sup> A significant body of literature exists to justify the assumptions above. First, reports on happiness tend to be consistent with other measures of well-being. For example, Diener, Suh, Lucas, and Smith (1999) show that the level of self-reported happiness is correlated with reports made by a third-party (e.g., a friend of the subject). Second, happiness data tend to move in a predictable way with external factors such as unemployment and marriage. For example, income increases predicted happiness and unemployment decreases it (Kahneman et al., 1999). Finally, studies in neuropsychology suggest that answers to happiness reports are correlated in a consistent manner with the activity in different areas of the brain associated with positive and negative experiences (Davidson, 1992, 2000). However, it is important to note that due to data limitations we are not able to control for individual heterogeneity, which may bias our results.

# [INSERT TABLE 3 HERE]

# B. Main Results

Next, we calculate the Atkinson index of inequality,  $A(\epsilon)$  using equation 3 and the estimated value of  $\epsilon$  from above. Intuitively,  $A(\epsilon)$  tells us how much society is willing to give up in terms of the aggregate level of income to achieve an egalitarian distribution of income, suggesting that there exists a level of income,  $\xi$ , to be received by all members of society. We next estimate the equivalently distributed income,  $\xi(\epsilon)$ , using equation 4. For a given level  $\epsilon > 0$ , social welfare is equal to the equivalently distributed level of income,  $W = \xi(\epsilon)$ , such that we can estimate W using equation 5.

$$\xi(\epsilon) = \frac{1}{n} [\sum y_i^{1-\epsilon}]^{\frac{1}{1-\epsilon}}$$
(4)

$$W(\bar{y}, A(\xi)) = \bar{y}[1 - A(\xi)]$$
<sup>(5)</sup>

Our main results are presented in Table 4 for each year over the period 1974-2012. The mean income for the sample is given in column 2. For  $\epsilon = 0.5$ , the calculated  $A(\epsilon), \xi(\epsilon)$ , and  $W(\epsilon)$  are reported in columns 3, 4, and 5, respectively. Because  $\epsilon$  has increased over time and differs across subgroups of the population, we also include the same calculations for  $\epsilon = 1$ . We use this value of the inequality aversion parameter because it corresponds to the log-linear form of the utility function that is a standard assumption in the happiness literature. Analogous results for  $\epsilon = 1$  are reported in columns 6-8.

In 1974, for example, mean income in the GSS sample was \$29,852. With  $\epsilon = 0.5$ , the distribution of income corresponds to an Atkinson index of inequality of 0.16 percentage points. This number suggests that if incomes were equally distributed, the same level of social welfare could be achieved with only 84 percent of the national income in 1974. In other words, 16 percent of national income could have been sacrificed to achieve an egalitarian income

distribution ( $\xi = $24,977$ ) and at the same time preserve the same level of national happiness. This is not to suggest that the cost of redistributing incomes equally is only 16 percent of income, but rather that given a modest level of aversion to inequality ( $\epsilon = 0.5$ ), social welfare would be unchanged if incomes were redistributed equally and total income only fell by 16 percent.

The social welfare associated with the income distribution in 1974 and  $\epsilon = 0.5$  is 316. This number by itself does not have any meaning, but it is useful to compare the welfare associated with different distributions and, for our purposes, to track the evolution of welfare over time. For instance, our results suggest that welfare slightly increased from 316 in 1974 to 329 in 2012. The increasing value of the Atkinson index of inequality,  $A(\epsilon = 0.5)$ , however, indicates a growing willingness to sacrifice an increasing portion of total income to achieve a more equal distribution. As briefly described above, in 1974 the same level of social welfare could have been obtained if everybody received an income of \$24,977, equivalent to a reduction of 16 percent of total income. By 2012,  $A(\epsilon = 0.5)$  increased by more than half, indicating that the same level of welfare could have been obtained if society gave up 26 percent of total income to achieve an equal distribution of income where everybody earned \$27,060.

The results are however sensitive to the value of  $\epsilon$ , as demonstrated by the calculations using  $\epsilon = 1$  reported in columns 6-8. At this level of inequality aversion, the results suggest that social welfare has changed very little since 1974. As expected, greater inequality aversion is associated with a much higher trade-off between equity and efficiency. According to the results in column 7, the same level of welfare could have been achieved in 2012 if everybody received an income of \$19,399, a 47 percent reduction in total income.

#### [INSERT TABLE 4 HERE]

# V. Concluding Remarks

Economic growth in the United State since the 1970's has not benefited all income classes equally. The top income quintile has experienced significantly larger income gains than the lower income quartiles, resulting in a rising level of income inequality.<sup>15</sup> This study examines the social welfare impact of the subsequent increase in personal incomes and income inequality over the period 1974-2012 using subjective well-being data from the General Social Survey. We first estimate the parameter of inequality aversion as  $\epsilon = 0.5$ , although our calculations indicated that Americans have become more inequality averse over time. We then use  $\epsilon$  to calculate the Atkinson Inequality Index,  $A(\epsilon)$ , equivalently distributed income,  $\xi(\epsilon)$ , and social welfare,  $W(\epsilon)$ , for each year over the period 1974-2012. The results suggest that, despite growing income inequality, rising incomes attributable to economic growth have more than offset the disutility created by income inequality as social welfare has increased since the 1970s. The growing aversion to inequality among Americans, however, suggests that future social welfare gains may be mitigated if income inequality continues to rise going forward. If this is the case, in setting public and business policies, policymakers and firms will have to more carefully consider the trade-off between efficiency and inequality. Understanding the reasons for growing aversion to inequality in the United States would be a useful extension of this research.

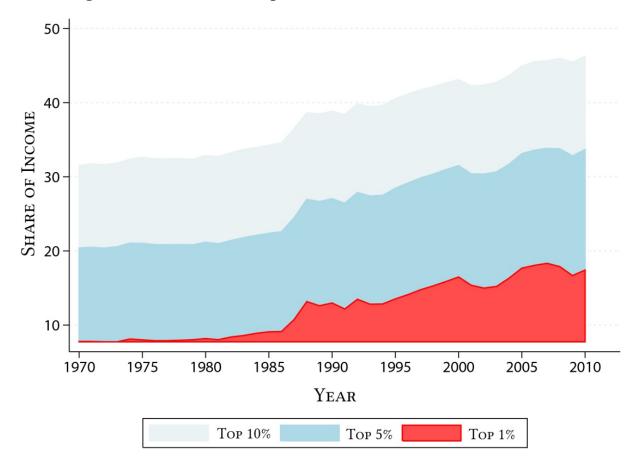
The results should however be taken with caution due to several methodological issues. First, our inability to control for unobserved individual heterogeneity is limited by data availability and

<sup>&</sup>lt;sup>15</sup> Analysis of income changes by quartiles is suggestive of an increase in inequality. This is not, however, suggestive that there has not been any social mobility, as income quartile statistics are based on a snapshot of the income distribution for income earners at a given point in time. As such, it does not account for the composition of workers or where they are in their career stage. This is an important consideration, as individuals move in and out of income quartiles over the course of their working lives as they gain valuable human capital and progress in their careers. See, for example, Güell, Mora, and Solon (2018) for an overview of recent research on intergenerational mobility.

may bias the results (Ferrer-i-Carbonell & Frijters, 2004). To the best of our knowledge, no longitudinal dataset exists for the United States that offer consistent data for the period examined by this study. Second, the Atkinson Inequality Index could be interpreted as capturing a value judgement on inequality aversion in social evaluations. This value judgement may indeed take the concavity of the utility function into account, but it may also represent other things such as fairness considerations. It is possible, for example, that in a world in which everybody has a linear utility function that people care about fairness and inequality. Thus, our results should be viewed as estimating a lower bound of inequality aversion. Finally, happiness is measured on a three-point categorical scale such that survey respondents likely face scaling effects over time as they experience income gains and recalibrate the scale. Despite these limitations, our analysis serves as an alternative method to examine the equality-efficiency trade-off using SWB data that accounts for inequality aversion, rather than traditional measures of socio-economic progress such as the Gini coefficient and economic growth. Research that employs more granular measures of well-being would be another useful extension.

#### References

- Aknin, L. B., Norton, M. I., & Dunn, E. W. (2009). From wealth to well-being? Money matters, but less than people think. *The Journal of Positive Psychology*, 4(6), 523-527. doi:10.1080/17439760903271421
- Alesina, A., Di Tella, R., & MacCulloch, R. (2004). Inequality and happiness: are Europeans and Americans different? *Journal of Public Economics*, 88(9), 2009-2042. doi:https://doi.org/10.1016/j.jpubeco.2003.07.006
- Atkinson, A. B. (1970). On the measurement of inequality. *Journal of Economic Theory*, 2(3), 244-263. doi:https://doi.org/10.1016/0022-0531(70)90039-6
- Auten, G. & D. Splinter (2018). Income Inequality in the United States: Using Tax Data to Measure Long-Term Trends. Working paper. Becker, G. S. (1981). A treatise on the family. Cambridge, Mass: Harvard University Press.
- Bennett, D. L., H.J. Faria, J.D. Gwartney, & D.R. Morales (2016). Evaluating Alternative Measures of Institutional Protection of Private Property and Their Relative Ability to Predict Economic Development. *Journal of Private Enterprise*, 31: 57-78.
- Bennett, D. L., H.J. Faria, J.D. Gwartney, & D.R. Morales (2017). Economic institutions and comparative economic development: A post-colonial perspective. *World Development*, 96: 503-519.


- Bennett, D.L., Nikolaev, B., & Aidt, T. (2016). Institutions and well-being. *European Journal of Political Economy*, 45(S): 1-10.
- Bennett, D. L., & Nikolaev, B. (2016). Factor endowments, the rule of law and structural inequality. *Journal of Institutional Economics*, 12(4): 773-795. doi:10.1017/S1744137416000084
- Bennett, D. L., & Nikolaev, B. (2017a). On the ambiguous economic freedom-inequality relationship. *Empirical Economics*, 53(2): 717-754.
- Bennett, D. L., & Nikolaev, B. (2017b). Economic Freedom & Happiness Inequality: Friends or Foes? Contemporary Economic Policy, 35(2), 373-391. doi:10.1111/coep.12190
- Bjørnskov, C., Dreher, A., & Fischer, J. A. V. (2010). Formal institutions and subjective wellbeing: Revisiting the cross-country evidence. *European Journal of Political Economy*, 26(4), 419-430. doi:https://doi.org/10.1016/j.ejpoleco.2010.03.001
- Bjørnskov, C., & Ming-Chang, T. (2015). How Do Institutions Affect Happiness and Misery? A Tale of Two Tails. *Comparative Sociology*, 14(3), 353-385. doi:doi:https://doi.org/10.1163/15691330-12341346
- Bolton, G. E., & Ockenfels, A. (2000). ERC: A Theory of Equity, Reciprocity, and Competition. *The American Economic Review*, *90*(1), 166-193.
- Box, G. E. P., & Cox, D. R. (1964). An Analysis of Transformations. *Journal of the Royal Statistical Society. Series B (Methodological), 26*(2), 211-252.
- Card, D. (1999). Chapter 30 The causal effect of education on earnings. In (Vol. 3, pp. 1801-1863): Elsevier B.V.
- Clark, A. E., Frijters, P., & Shields, M. A. (2008). Relative Income, Happiness, and Utility: An Explanation for the Easterlin Paradox and Other Puzzles. *Journal of Economic Literature, 46*(1), 95-144.
- Cooper, D. J., & Kagel, J. H. (2015). Other-Regarding Preferences: A Selective Survey of Experimental Results. In J. H. Kagel & A. E. Roth (Eds.), *The Handbook of Experimental Economics* (Vol. 2). Princeton, NJ: Princeton University Press.
- Davidson, R. J. (1992). Emotion and Affective Style: Hemispheric Substrates. *Psychological Science*, *3*(1), 39-43. doi:10.1111/j.1467-9280.1992.tb00254.x
- Davidson, R. J. (2000). Affective style, psychopathology, and resilience: brain mechanisms and plasticity. *The American psychologist*, *55*(11), 1196-1214. doi:10.1037/0003-066X.55.11.1196
- De Haan, J., Lundström, S., & Sturm, J.-E. (2006). Market-oriented institutions and policies and economic growth: A critical survey. *Journal of Economic Surveys*, 20(2), 157-191. doi:10.1111/j.0950-0804.2006.00278.x
- Deaton, A. (1997). *The Analysis of Household Surveys : A Microeconometric Approach to Development Policy*. Baltimore, Md: World Bank Publications.
- Deaton, A. (2008). Income, Health, and Well-Being around the World: Evidence from the Gallup World Poll. *The Journal of Economic Perspectives*, 22(2), 53-72. doi:http://dx.doi.org/10.1257/jep.22.2.53
- Di Tella, R., MacCulloch, R. J., & Oswald, A. J. (2003). The Macroeconomics of Happiness. *The Review of Economics and Statistics*, 85(4), 809-827.
- Diener, E., Lucas, R. E., & Scollon, C. N. (2006). Beyond the hedonic treadmill: Revising the adaptation theory of well-being. *American Psychologist*, 61(4), 305-314. doi:10.1037/0003-066X.61.4.305

- Diener, E., Suh, E. M., Lucas, R. E., & Smith, H. L. (1999). Subjective Well-Being: Three Decades of Progress. *Psychological Bulletin*, 125(2), 276-302. doi:10.1037/0033-2909.125.2.276
- Doyle, K. O., & Youn, S. (2000). Exploring the Traits of Happy People. Social Indicators Research, 52(2), 195-209. doi:10.1023/A:1007017616165
- Duesenberry, J. S. (1949). *Income, saving, and the theory of consumer behavior*. Cambridge: Harvard University Press.
- Easterlin, R. A. (1974). "Does Economic Growth Improve the Human Lot? Some Empirical Evidence." In P.A. David and M. W. Reder (Eds.), *Nations and Households in Economic Growth*. New York: Academic Press, 89-125.
- Easterlin, R. A. (1995). Will raising the incomes of all increase the happiness of all? *Journal of Economic Behavior & Organization*, 27(1), 35-47. doi:https://doi.org/10.1016/0167-2681(95)00003-B
- Easterlin, R. A. (2005). Diminishing Marginal Utility of Income? Caveat Emptor. Social Indicators Research, 70(3), 243-255.
- Easterlin, R. A., McVey, L. A., Switek, M., Sawangfa, O., & Zweig, J. S. (2010). The happiness–income paradox revisited. *Proceedings of the National Academy of Sciences*, 107(52), 22463-22468.
- Fehr, E., & Schmidt, K. M. (2003). Theories of Fairness and Reciprocity: Evidence and Economic Applications. In (Vol. 1, pp. 208-257). Cambridge: Cambridge University Press.
- Ferrer-i-Carbonell, A., & Frijters, P. (2004). How Important Is Methodology for the Estimates of the Determinants of Happiness? *The Economic Journal*, 114(497), 641-659. doi:10.1111/j.1468-0297.2004.00235.x
- Ferrer-i-Carbonell, A., & Ramos, X. (2014). Inequality and happiness. Journal of Economic Surveys, 28(5), 1016-1027. doi:10.1111/joes.12049
- Frey, B. S., & Stutzer, A. (2002). What can economists learn from happiness research? *Journal* of Economic Literature, 40(2), 402-435.
- Gehring, K. (2013). Who Benefits from Economic Freedom? Unraveling the Effect of Economic Freedom on Subjective Well-Being. *World Development*, 50(Supplement C), 74-90. doi:https://doi.org/10.1016/j.worlddev.2013.05.003
- Graham, C. (2009). *Happiness around the world: the paradox of happy peasants and miserable millionaires*. Oxford: Oxford University Press.
- Graham, C., & Felton, A. (2006). Inequality and happiness: Insights from Latin America. *The* Journal of Economic Inequality, 4(1), 107-122. doi:10.1007/s10888-005-9009-1
- Maia Güell, José V. Rodríguez Mora, Gary Solon, New Directions in Measuring Intergenerational Mobility: Introduction, *The Economic Journal*, 128 (612), F335–F339. https://doi.org/10.1111/ecoj.12607
- Hall, J. C., & Lawson, R. A. (2014). Economic freedom of the world: An accounting of the literature. *Contemporary Economic Policy*, *32*(1), 1-19. doi:10.1111/coep.12010
- Hartley, R., Lanot, G., & Walker, I. (2014). Who really wants to be a millionaire? Estimates of risk aversion from gameshow data. *Journal of Applied Econometrics*, 29(6), 861-879. doi:10.1002/jae.2353
- Holt, M. (2004). *Getting the Most Out of the GSS Income Measures*. Retrieved from http://gss.norc.org/Documents/reports/methodological-

reports/MR101%20Getting%20the%20Most%20Out%20of%20the%20GSS%20Income %20Measures.pdf

- Horpedahl, J., Jackson, J., & Mitchell, D. (2019). Is Economic Freedom the Hidden Path to Social Justice? *Journal of Private Enterprise*, *34*(4): 55-74.
- Inglehart, R., Foa, R., Peterson, C., & Welzel, C. (2008). Development, Freedom, and Rising Happiness: A Global Perspective (1981–2007). *Perspectives on Psychological Science*, 3(4), 264-285. doi:10.1111/j.1745-6924.2008.00078.x
- Kahneman, D., & Deaton, A. (2010). High income improves evaluation of life but not emotional well-being. Proceedings of the National Academy of Sciences of the United States of America, 107(38), 16489-16493.
- Kahneman, D., Diener, E., & Schwartz, B. (1999). *Well-Being: Foundations of Hedonic Psychology* (D. Kahneman, E. Diener, & N. Schwarz Eds.): Russell Sage Foundation.
- Kahneman, D., & Krueger, A. B. (2006). Developments in the Measurement of Subjective Well-Being. *Journal of Economic Perspectives*, 20(1), 3-24.
- Layard, R., Mayraz, G., & Nickell, S. (2008). The marginal utility of income. *Journal of Public Economics*, 92(8), 1846-1857. doi:https://doi.org/10.1016/j.jpubeco.2008.01.007
- Lee, D.R. (2011). Happiness, Adaptation, and Decreasing Marginal Utility of Income. *Journal of Private Enterprise*, *27*(1): 63-73.
- Magness, P.W. & Murphy, R.P. (2015). Challenging the Empirical Contribution of Thomas Piketty's Capital in the Twenty-First Century. *Journal of Private Enterprise*, *30*(1): 1-34.
- Nikolaev, B. (2014). Economic Freedom and Quality of Life: Evidence from the OECD's Your Better Life Index. *Journal of Private Enterprise*, 29: 61-96.
- Nikolaev, B., & Bennett, D. L. (2016). Give me liberty and give me control: Economic freedom, control perceptions and the paradox of choice. *European Journal of Political Economy*, 45(Supplement), 39-52. doi:https://doi.org/10.1016/j.ejpoleco.2015.12.002
- Nikolaev, B., & Bennett, D. L. (2017). Economic Freedom and Emotional Well-Being. *Journal* of Regional Analysis & Policy, 47(1), 88-99.
- Norton, M. I., & Ariely, D. (2011). Building a Better America—One Wealth Quintile at a Time. *Perspectives on Psychological Science*, 6(1), 9-12. doi:10.1177/1745691610393524
- Okun, A. M. (1975). Equality and efficiency, the big tradeoff. Washington: The Brookings Institution.
- Perovic, L. M., & Golem, S. (2010). Investigating Macroeconomic Determinants of Happiness in Transition Countries. *Eastern European Economics*, 48(4), 59-75. doi:10.2753/EEE0012-8775480403
- Piketty, T., & Saez, E. (2003). Income Inequality in the United States, 1913-1998. *The Quarterly Journal of Economics*, 118(1), 1-39.
- Pitlik, H., & Rode, M. (2016). Free to choose? Economic freedom, relative income, and life control perceptions. *International Journal of Wellbeing*, 6(1), 81-100. doi:10.5502/ijw.v6i1.390
- Powdthavee, N. (2010). How much does money really matter? Estimating the causal effects of income on happiness. *Empirical Economics*, 39(1), 77-92. doi:http://dx.doi.org/10.1007/s00181-009-0295-5
- Rawls, J. (2009 [1971]). *A Theory of Justice*. Cambridge, Mass.: Belknap Press of Harvard University Press.

- Rode, M. (2013). Do Good Institutions Make Citizens Happy, or Do Happy Citizens Build Better Institutions? *Journal of Happiness Studies*, 14(5), 1479-1505. doi:http://dx.doi.org/10.1007/s10902-012-9391-x
- Rose, S.J. (2018). How Different Studies Measure Income Inequality in the US: Piketty and Company are Not the Only Game in Town. Washington, DC: Urban Institute.
- Sacks, D. W., Stevenson, B., & Wolfers, J. (2013). "Income, Growth, and Subjective Well-Being." In C. Sepulveda, A. Harrison, & J. Y. Lin (Eds.), *Development Challenges in a Post-Crisis World*. Washington, DC: World Bank.
- Schwartz, B. (2004). *The Paradox of Choice: Why More Is Less*. New York, NY: Harper Perennial.
- Sen, A. (1999). Development as freedom (1st. ed.). New York: Knopf.
- Smith, A. (1904 [1776]). *An Inquiry into the Nature and Causes of the Wealth of Nations* (E. Cannan Ed.): Library of Economics and Liberty.
- Smith, A. (1976 [1759]). The theory of moral sentiments. Indianapolis: Liberty Classics.
- Snowdon, Christopher (2012). Are more equal societies happier? In: Booth, P. (ed.) ...and the Pursuit of Happiness: Wellbeing and the Role of Government. London: Institute for Economic Affairs: 98-122.
- Stevenson, B., & Wolfers, J. (2008). Economic growth and subjective well-being: reassessing the Easterlin paradox. *Brookings Papers on Economic Activity*, Spring 2008, 88-102.
- Stiglitz, J. E. (2012). *The price of inequality: how today's divided society endangers our future*. New York: W.W. Norton.
- Vedder, R. & Gallaway, L. (1999). The Equity-Efficiency Debate. *Journal of Private Enterprise*, 15(1): 1-17.
- Verme, P. (2009). Happiness, freedom and control. *Journal of Economic Behavior & Organization*, 71(2), 146-161. doi:https://doi.org/10.1016/j.jebo.2009.04.008
- Wiklund, J., Nikolaev, B., Shir, N., Foo, M., & Bradley, S. (2019). Entrepreneurship and wellbeing: Past, present, and future. *Journal of Business Venturing*, *34*(4): 579-588.



# Figure 1: Evolution of Top Income Shares in the US, 1970-2010

*Notes:* Picketty and Saez (2003). Updated data series covering the period 1920-2010 can be found on the website of Emanuel Saez (<u>http://elsa.berkeley.edu/~saez/#income</u>), Table A.3.

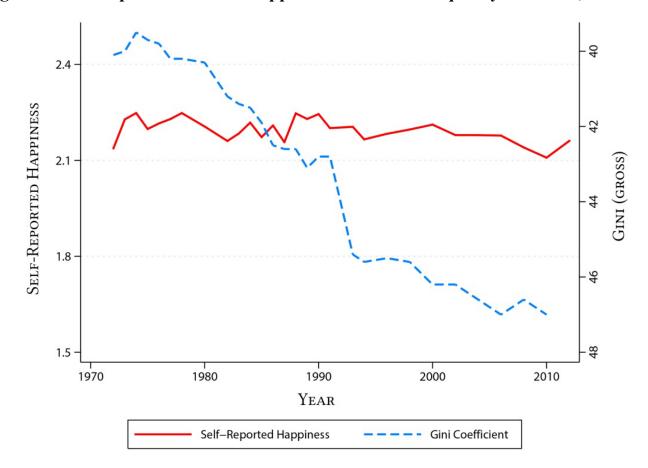



Figure 2: Self-Reported Level of Happiness and Income Equality in the US, 1970-2010

*Notes:* Data on self-reported level of happiness is from the GSS variable: happy. Self-reported happiness represents annual averages to the question: "Taken all together, how would you say things are these days would you say that you are very happy [3], pretty happy [2], or not too happy [1]?" Gini represents gross income (before taxes) Gini coefficient for households (all races) from the U.S. Department of Commerce. Gini coefficients are a measure of inequality and take values between 0 (complete equality) and 100 (complete inequality). Movements up (down) thee secondary axis are associated with less (more) income inequality.

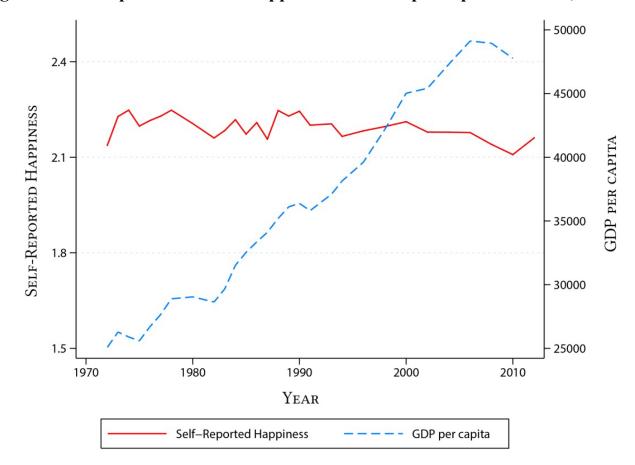
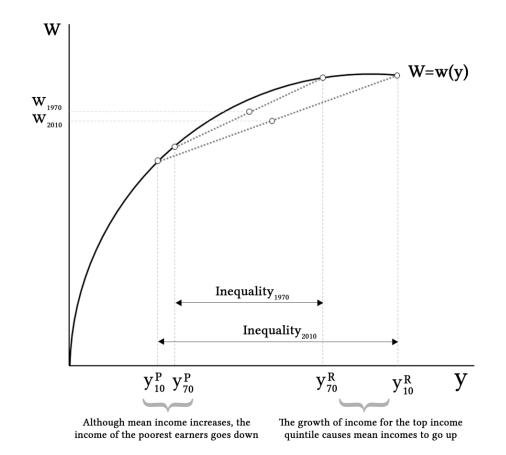




Figure 3: Self-Reported Level of Happiness and GDP per capita in the US, 1970-2010

*Notes:* Data on self-reported level of happiness is from the GSS variable: *happy*. Self-reported happiness represents annual averages to the question: "Taken all together, how would you say things are these days would you say that you are very happy [3], pretty happy [2], or not too happy [1]?" Data on GDP per capita (constant 2011 dollars) from the Bureau of Labor Statistics.





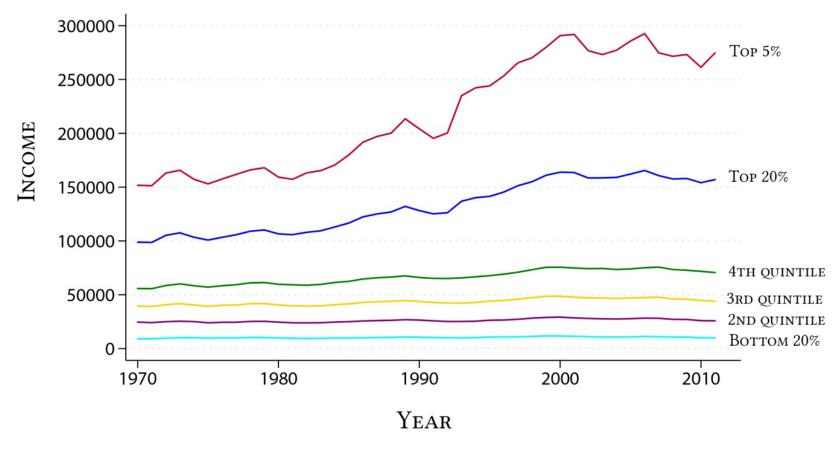



Figure 5: Mean Household Income Received by Each Quintile and the Top Five Percent

Notes: Income represents the mean income for each group (e.g., quintiles, top 5%). Data from the U.S. Department of Commerce.

| Micro Variables   | Description                                                                                                                                                                                                                      | Source                                                                                       |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| Нарру             | Data was collected with the question: " <i>Taken all together, how would</i><br>you say things are these days would you say that you are very happy,<br>pretty happy, or not too happy?" (1 'not too happy', 2 'pretty happy', 3 | General Social Survey (GSS variable: <i>happy</i> ) <u>http://www3.norc.org/gss+website/</u> |  |  |
|                   | 'very happy')                                                                                                                                                                                                                    |                                                                                              |  |  |
| Income            | Respondent's income (in 2005 constant dollars)                                                                                                                                                                                   | GSS variable: conrinc                                                                        |  |  |
| Trust             | Data was collected with the question: "Generally speaking, would you say that most people can be trusted or that you can't be too careful in dealing with people?" (0 'can trust', 1 'cannot trust')                             | GSS variable: trust                                                                          |  |  |
| Fairness          | "Do you think most people would try to take advantage of you if they got<br>a chance, or would they try to be fair? (0 'take advantage' and 1 'fair')                                                                            | GSS variable: <i>fair</i>                                                                    |  |  |
| Age               | Age in years                                                                                                                                                                                                                     | GSS variable: age                                                                            |  |  |
| Sex               | Gender dummy with 0 'male' and 1 'female'                                                                                                                                                                                        | GSS variable: sex                                                                            |  |  |
| Race              | Race dummy with 0 'white' and 1 'black'                                                                                                                                                                                          | GSS variable: race                                                                           |  |  |
| Marital Status    | Dummies for divorced, separated, and widowed (married is the base category)                                                                                                                                                      | GSS variable: marital                                                                        |  |  |
| Educational Level | Dummies for high school, college, graduate school (less than high school is the base category)                                                                                                                                   | GSS variable: <i>degree</i>                                                                  |  |  |
| Employment Status | Dummy for unemployed                                                                                                                                                                                                             | GSS variable: wrkstat                                                                        |  |  |

# **Table 1: Description and Sources of Main Variables**

| Micro Variables                         | Observations | Mean     | St. Dev. | Min      | Max      |
|-----------------------------------------|--------------|----------|----------|----------|----------|
| Happiness                               | 52,321       | 2.19     | 0.64     | 1        | 3        |
| Income                                  | 33,365       | 31,770   | 32367    | 383      | 434612   |
| Log Income                              | 33,365       | 9.92     | 1.09     | 5.95     | 12.98    |
| Relative Income (y/y*)                  | 33,365       | 1.27     | 1.29     | 0.02     | 17.38    |
| Relative Position $(y-y^*)^2$           | 33,365       | 1.09E+09 | 6.63E+09 | 0.00E+00 | 1.66E+11 |
| Age                                     | 56,859       | 45.70    | 17.47    | 18.00    | 89.00    |
| Age squared                             | 56,859       | 2,394    | 1761     | 324      | 7921     |
| Female (Male is base)                   | 57,061       | 0.56     | 0.50     | 0        | 1        |
| Black (White is base)                   | 57,061       | 0.14     | 0.35     | 0        | 1        |
| Marital (Married is base)               |              |          |          |          |          |
| Widowed                                 | 57,041       | 0.10     | 0.30     | 0        | 1        |
| Divorced                                | 57,041       | 0.12     | 0.33     | 0        | 1        |
| Separated                               | 57,041       | 0.03     | 0.18     | 0        | 1        |
| Never Married                           | 57,041       | 0.20     | 0.40     | 0        | 1        |
| <i>Education</i> (Less than HS is base) |              |          |          |          |          |
| High School                             | 56,896       | 0.51     | 0.50     | 0        | 1        |
| Junior High                             | 56,896       | 0.05     | 0.23     | 0        | 1        |
| College                                 | 56,896       | 0.14     | 0.35     | 0        | 1        |
| Graduate School                         | 56,896       | 0.07     | 0.25     | 0        | 1        |
| Trust                                   | 37,493       | 0.58     | 0.49     | 0        | 1        |
| Fairness                                | 35,713       | 0.56     | 0.50     | 0        | 1        |

**Table 2: Summary Statistics for Microeconomic Variables** 

*Notes:* y\* represents the median income in the sample by year.

| Subgroup                                                                                              | λ    |         |     | Observations | 3    |
|-------------------------------------------------------------------------------------------------------|------|---------|-----|--------------|------|
| All subjects                                                                                          | 0.50 | (.0791) | *** | 30398        | 0.50 |
| Women                                                                                                 | 0.49 | (.0913) | *** | 15473        | 0.51 |
| Men                                                                                                   | 0.44 | (.1783) | **  | 14925        | 0.56 |
| White                                                                                                 | 0.49 | (.0791) | *** | 24882        | 0.51 |
| Black                                                                                                 | 0.60 | (.3060) | **  | 3965         | 0.40 |
| Strong Democrats                                                                                      | 0.50 | (.1425) | *** | 6554         | 0.50 |
| Strong Republicans                                                                                    | 0.71 | (.2427) | *** | 444          | 0.29 |
| Age>40                                                                                                | 0.47 | (.1176) | *** | 13822        | 0.53 |
| Married                                                                                               | 0.43 | (.1074) | *** | 16687        | 0.57 |
| Divorced                                                                                              | 0.59 | (.1741) | *** | 4300         | 0.41 |
| Protestant                                                                                            | 0.47 | (.0767) | *** | 17216        | 0.53 |
| No Religion                                                                                           | 0.65 | (.1589) | *** | 3697         | 0.35 |
| High School                                                                                           | 0.64 | (.1137) | *** | 16366        | 0.36 |
| College                                                                                               | 0.66 | (.1753) | *** | 5139         | 0.34 |
| Graduate School                                                                                       | 0.03 | (.1991) | *** | 2549         | 0.97 |
| Year ≤1980                                                                                            | 0.81 | (.1917) | *** | 5293         | 0.19 |
| 1980 <year td="" ≤1990<=""><td>0.61</td><td>(.1306)</td><td>***</td><td>8782</td><td>0.39</td></year> | 0.61 | (.1306) | *** | 8782         | 0.39 |
| 1990 <year td="" ≤2000<=""><td>0.52</td><td>(.1297)</td><td>***</td><td>9427</td><td>0.48</td></year> | 0.52 | (.1297) | *** | 9427         | 0.48 |
| Year > 2000                                                                                           | 0.35 | (.0928) | *** | 6934         | 0.65 |

Table 3: Estimates for  $\boldsymbol{\epsilon}$  using a Box-Cox transformation

|      | (2)      | (3)             |          | (5)    | (6)            |          |         |
|------|----------|-----------------|----------|--------|----------------|----------|---------|
| (1)  | Mean     | Α               | (4)      | W      | Α              | (7)      | (8)     |
| Year | Income   | (ε= <b>.</b> 5) | ξ (ε=.5) | (ε=.5) | ( <b>ε=1</b> ) | ξ (ε=1)  | W (ɛ=1) |
| 1974 | \$29,852 | 0.16            | \$24,977 | 316    | 0.34           | \$19,757 | 9.89    |
| 1975 | \$25,522 | 0.16            | \$21,407 | 293    | 0.34           | \$16,773 | 9.73    |
| 1976 | \$27,567 | 0.16            | \$23,208 | 305    | 0.33           | \$18,489 | 9.82    |
| 1977 | \$29,580 | 0.17            | \$24,492 | 313    | 0.34           | \$19,495 | 9.88    |
| 1978 | \$27,927 | 0.18            | \$22,997 | 303    | 0.36           | \$17,773 | 9.79    |
| 1980 | \$31,868 | 0.17            | \$26,317 | 324    | 0.35           | \$20,590 | 9.93    |
| 1982 | \$26,095 | 0.16            | \$21,903 | 296    | 0.34           | \$17,290 | 9.76    |
| 1983 | \$27,604 | 0.16            | \$23,175 | 304    | 0.34           | \$18,205 | 9.81    |
| 1984 | \$27,528 | 0.17            | \$22,911 | 303    | 0.35           | \$17,850 | 9.79    |
| 1985 | \$29,997 | 0.18            | \$24,727 | 314    | 0.36           | \$19,081 | 9.86    |
| 1986 | \$28,475 | 0.17            | \$23,744 | 308    | 0.35           | \$18,505 | 9.83    |
| 1987 | \$28,389 | 0.16            | \$23,757 | 308    | 0.35           | \$18,532 | 9.83    |
| 1988 | \$29,001 | 0.16            | \$24,461 | 313    | 0.33           | \$19,287 | 9.87    |
| 1989 | \$29,476 | 0.15            | \$24,987 | 316    | 0.33           | \$19,790 | 9.89    |
| 1990 | \$29,386 | 0.16            | \$24,686 | 314    | 0.33           | \$19,613 | 9.88    |
| 1991 | \$28,896 | 0.16            | \$24,242 | 311    | 0.34           | \$18,962 | 9.85    |
| 1993 | \$32,663 | 0.17            | \$27,067 | 329    | 0.35           | \$21,237 | 9.96    |
| 1994 | \$30,347 | 0.15            | \$25,776 | 321    | 0.32           | \$20,636 | 9.93    |
| 1996 | \$31,592 | 0.15            | \$26,923 | 328    | 0.31           | \$21,787 | 9.99    |
| 1998 | \$32,877 | 0.16            | \$27,633 | 332    | 0.33           | \$22,152 | 10.01   |
| 2000 | \$33,188 | 0.16            | \$27,781 | 333    | 0.34           | \$22,016 | 10.00   |
| 2002 | \$37,350 | 0.21            | \$29,345 | 343    | 0.41           | \$22,035 | 10.00   |
| 2004 | \$37,610 | 0.18            | \$30,807 | 351    | 0.37           | \$23,681 | 10.07   |
| 2006 | \$35,212 | 0.18            | \$28,889 | 340    | 0.36           | \$22,366 | 10.02   |
| 2008 | \$41,897 | 0.27            | \$30,740 | 351    | 0.47           | \$22,389 | 10.02   |
| 2010 | \$31,632 | 0.19            | \$25,523 | 320    | 0.40           | \$18,966 | 9.85    |
| 2012 | \$36,692 | 0.26            | \$27,060 | 329    | 0.47           | \$19,399 | 9.87    |

Table 4: Atkinson Inequality, Equivalent Income, and Social Welfare for selected values of  $\epsilon$ , 1974-2012

# **Appendix: Theoretical Model**

This appendix describes the theoretical model that we used to derive the equations for our empirical analysis. As described in section 4, our analysis is based on a neo-utilitarian social welfare framework In particular, we estimate the Atkinson Inequality Index, which accounts for the trade-off between income and inequality (Atkinson, 1970). The Atkinson Inequality Index is related to a class of additive social welfare functions as depicted by Equation 6, where social welfare, W, is an aggregate measure of utility and is a function of all individual's personal incomes,  $y_i$ ,  $\forall i$ .

$$W = \frac{1}{n} \sum u_i(y_i) \tag{6}$$

To incorporate the idea that additional income may bring greater marginal utility to poorer people, we use the iso-elastic utility function depicted in Equation 7, where  $\epsilon$  is the inequality aversion parameter or the negative elasticity of marginal income (Layard, Mayraz, & Nickell, 2008). Conceptually, this function is equivalent to a constant relative risk aversion (CRRA) function.<sup>16</sup>

$$u_{i} = \begin{cases} \frac{y_{i}^{1-\epsilon}-1}{1-\epsilon} & \text{if } \epsilon \neq 1\\ \log(y_{i}) & \text{if } \epsilon = 1 \end{cases}$$
(7)

There are two polar cases that require discussion. First, when inequality aversion is zero ( $\epsilon = 0$ ), society does not care about inequality at all and utility equals income ( $u_i = y_i$ ) such that social welfare collapses to the *Utilitarian* function. In this scenario, social welfare equals the average level of income ( $\bar{y}$ ), as depicted by Equation 8, and there is no trade-off between growth

<sup>&</sup>lt;sup>16</sup> Because income is associated with utility, the iso-elastic utility function presented in Equation 4 is also analytically analogous to the Box-Cox transformation (Box & Cox, 1964) when we set  $\lambda = 1 - \epsilon$ . We exploit this feature in the results section to estimate the inequality aversion parameter,  $\epsilon$ .

and inequality because all individuals receive the same marginal utility from a marginal change in income. Social welfare is maximized by maximizing growth, irrespective of who receives the additional income.

$$W = \frac{1}{n} \sum u_i = \frac{1}{n} \sum y_i = \overline{y} \quad if \ \epsilon = 0 \to Utilitarian \tag{8}$$

Second, if society is infinitely averse to inequality ( $\epsilon = \infty$ ), then social welfare is equal to the utility of the poorest member of society, as depicted by equation 9. In this scenario, social welfare is only increased when income gains accrue to the poorest member of society. Income gains that accrue to individuals other than the poorest person have no effect on social welfare. As such, the objective of policy is to maximize income of the individual with the minimal income. This is similar to Rawls' maxi-min principle (Rawls, 1971), so this scenario is referred to as the *Rawlsian* social welfare function.

$$W = \min[u_i(y_i)] \quad \text{if } \epsilon = \infty \to Rawlsian \tag{9}$$

When society has some aversion to inequality and it is not infinite ( $0 < \epsilon < \infty$ ), the social welfare function takes the iso-elastic function form, as depicted by Equation 10.

$$W = \frac{1}{n} \left[ \frac{\sum y_i^{1-\epsilon} - 1}{1-\epsilon} \right] \quad \text{if } 0 < \epsilon < \infty \to Iso - elastic \tag{10}$$

In this scenario, social welfare is exhibits diminishing marginal returns because it is increasing in income  $\left(\frac{\partial W}{\partial y_i} = \frac{y_i^{-\epsilon}}{n} > 0\right)$  at a decreasing rate  $\left(\frac{\partial^2 W}{\partial^2 y_i} = -\epsilon \frac{(y_i^{-\epsilon-1})}{n} < 0\right)$ . As  $\epsilon$ increases, lower incomes are given relatively more weight for social welfare. The ratio of the marginal social welfare contribution of two individual's income is given by Equation 11. When  $\epsilon = 1$ , the utility function takes the log-linear form  $(u_i = \log y_i)$  and the marginal utilities of two individuals are inversely proportional. The implication of this case is that an individual with an income of \$10,000 will derive ten times more utility from an additional dollar of income than an individual with an income of \$100,000. Many studies in the happiness economics use the loglinear specification (see, e.g., a survey of the inequality and happiness literature by Ferrer-i-Carbonell & Ramos, 2014), implicitly assuming that  $\epsilon = 1$  and individual marginal utilities are inversely proportional.

$$\frac{\frac{\partial W}{\partial y_A}}{\frac{\partial W}{\partial y_B}} = \left(\frac{y_B}{y_A}\right)^{\epsilon} \tag{11}$$

Within this framework the Atkinson Inequality Index,  $A(\epsilon)$ , is given by Equation 12, where  $\bar{y}$  is the mean level of income. When  $\epsilon = 1$ ,  $A(\epsilon)$  takes the multiplicative form given by Equation 13. Intuitively,  $A(\epsilon)$  tells us how much society is willing to give up in terms of the aggregate level of income to achieve an egalitarian distribution of income, suggesting that there exists a level of income,  $\xi$ , to be received by all members of society such that  $W(\xi) =$  $W(y_i), \forall i$ .

$$A(\epsilon) = 1 - \left[\frac{1}{n} \sum \left(\frac{y_i}{\bar{y}}\right)^{1-\epsilon}\right]^{\frac{1}{1-\epsilon}}$$
(12)

$$A(\epsilon) = 1 - \Pi \left(\frac{y_i}{\bar{y}}\right)^{\frac{1}{n}}$$
(13)

Figure 6 demonstrates this concept for a society consisting of two representative agents, A and B. The X-axis shows the income of agent A and the Y-axis shows the income of agent B. Let's assume that the income distribution is at point A where  $y_A < y_B$ . If  $\epsilon = 0$  (zero inequality aversion) then the social welfare function (SFW) will be Utilitarian (a straight line between A, B, and C). Any point along the Utilitarian SWF optimizes social welfare, regardless of the distribution of income. In this scenario, economic growth that raised the incomes of both agents will unambiguously improve social welfare, regardless of how the relative income gains are distribution. Similarly, any reduction of the overall level of income, such as that observed during a recession will unambiguously result in lower social welfare, even if income becomes more evenly distributed as a result.

When  $0 < \epsilon < \infty$  the SWF will be iso-elastic. The convex SWF reflects a positive aversion to inequality the trade-off between equality and income. Social welfare is unchanged along the iso-elastic curve and there exists a point E in which both agent A and agent B receive an income of  $\xi$  such that perfect income equality is achieved. This level of income is known as the *equally distributed equivalent*. Due to the convexity of the SWF it is always the case the  $\xi < \overline{y}$ . Even though total income is lower at point E relative to point C, the social welfare that is lost due to a decline of total income is fully compensated for by the gain in equality. This is to say that society is willing to pay a price in terms of a reduction in total income to achieve a more equal distribution of total income when there is a positive aversion to inequality.

# [INSERT FIGURE 6 HERE]

Since equality is measured by the ratio of the length of the vector OC to the length of vector OE (OC/OE), or equivalently  $\frac{\bar{y}}{\xi}$ , then  $\xi = \bar{y} = 1$  for a society with an egalitarian distribution. We can then express the Atkinson Inequality Index as a function of  $\xi$ , as described by Equation 14.

$$A(\xi) = 1 - \frac{\xi}{\bar{y}} \tag{14}$$

Because  $y_i = \xi$ ,  $\forall i$ , we can also rewrite the utility function given by Equation 7, assuming that  $\epsilon \neq 1$ , as a function of  $\xi$ , as described by Equation 15.

$$u(\xi,\epsilon) = \frac{\xi^{1-\epsilon}-1}{1-\epsilon} , \forall i$$
(15)

Similarly, the iso-elastic social welfare function given by Equation 7 can be rewritten as a function of  $\xi$ , as described by Equation 16. Note that social welfare is now equivalent to the individual utility function.

$$W(\xi,\epsilon) = \frac{\xi^{1-\epsilon}-1}{1-\epsilon}$$
(16)

We can solve directly for  $\xi$  as a function from equations 7 and 13, yielding Equation 17. Given any income distribution and the inequality aversion parameter,  $\epsilon$ , we can calculate  $\xi$ . When  $\epsilon = 0$ ,  $\xi = \overline{y}$ . For  $\epsilon > 0$ ,  $\xi < \overline{y}$  and will decrease as  $\epsilon$  grows larger, reflecting the greater social cost of inequality.

$$\xi(\epsilon) = \frac{1}{n} \left[ \sum y_i^{1-\epsilon} \right]^{\frac{1}{1-\epsilon}} \tag{17}$$

For a given  $\epsilon > 0$ ,  $W = \xi$  such that we can solve for W as a function of  $\overline{y}$  and  $A(\xi)$  from Equation 11, resulting in Equation 18. Because  $\frac{\partial W}{\partial \overline{y}} > 0$ , it is possible to simultaneously experience in increase in both social welfare and inequality.

$$W(\bar{y}, A(\xi)) = \bar{y}[1 - A(\xi)] \tag{18}$$

The overall change in social welfare ultimately depends on the concavity of the SWF, which is determined by the level of inequality aversion, or the value of  $\epsilon$ . The choice of  $\epsilon$  by analysts is often arbitrary. The Census Bureau, for example, reports  $\epsilon$  for values of 0.25, 0.5 and 0.75. In section 3, we estimate parametrically the value of  $\epsilon$  using SWB data from the GSS using the procedure outlined above. Once we estimate the value of  $\epsilon$ , we proceed to calculate the value of  $A(\epsilon), \xi(\epsilon)$ , and  $W(\epsilon)$  to evaluate whether economic growth in the United States over the period 1974-2012 has been sufficient to compensate for the growing level of income inequality.

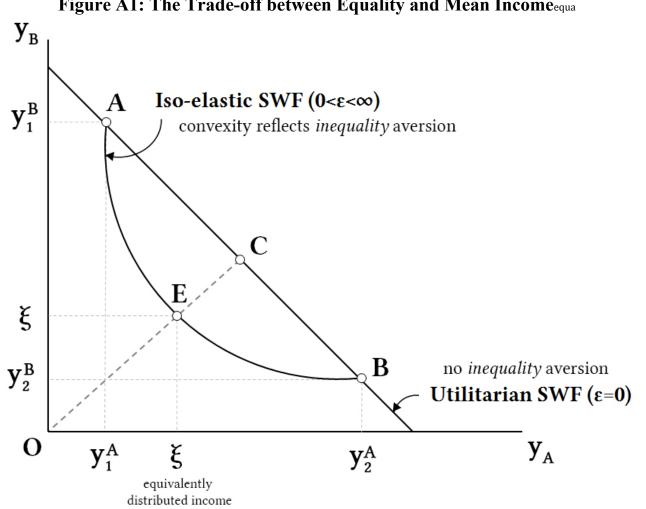



Figure A1: The Trade-off between Equality and Mean Incomeequa